Abstract

In addressing the challenges of quantitative precipitation estimation (QPE) using weather radar, the importance of enhancing the rainfall estimates for applications such as flash flood forecasting and hydropower generation management is recognized. This study employed dual-polarization weather radar data to refine the traditional Z–R relationship, which often needs higher accuracy in areas with complex meteorological phenomena. Utilizing tree-based machine learning algorithms, such as random forest and gradient boosting, this research analyzed polarimetric variables to capture the intricate patterns within the Z–R relationship. The results highlight machine learning’s potential to improve the precision of precipitation estimation, especially under challenging weather conditions. Integrating meteorological insights with advanced machine learning techniques is a remarkable achievement toward a more precise and adaptable precipitation estimation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.