Abstract
The purpose of this paper is to present a quantitative posture analysis of microsurgery tasks performed with different visualization methods. Microsurgery is traditionally performed using a binocular microscope; however surgeons are constrained by the optical eyepieces and are forced to assume joint angles that deviate away from neutral postures. This may be especially problematic for the neck and can increase surgeon discomfort and fatigue. Alternative visualization methods may improve surgeon posture by eliminating the constraints imposed by the microscope. This study examines both 2D and 3D heads-up displays as possible alternatives. Six subjects performed microsurgical tasks with each visualization methods for four hours. Quantitative posture analysis was done using Maxtraq software that tracks reflective markers on the subjects. The initial analysis of neck, upper arm, and elbow angles found significant differences between each display. A biomechanical analysis found that the differences in angles can result in loads on the neck joint that are twice as high in the microscope than the headsup displays. Although the alternative displays can result in better postures, improvements the display technology is needed to improve microsurgical task performance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.