Abstract
Photoconductive atomic force microscopy can probe monolayers of PbS/perovskite quantum dots (QDs) with a contact area of 1-3 QDs in stable and reproducible acquisition conditions for I/V curves and photocurrent maps. From the measurements, quantitative values for the barrier height, built-in voltage, diffusion constant and ideality factor are deduced with high precision. The data analysis is based on modelling a superposition of the drift current of the photo-excited charges and a diffusion current across the interface barriers, providing physical insight into the underlying processes. Besides looking into PbS/perovskite on an indium tin oxide substrate, it is shown how the photocurrent is modified by changing either the QD ligand (to thiocyanate) or the substrate (to micro- and nanostructured gold). The dependence of the photocurrent on the light irradiance is found to follow a power law with an exponent of 0.64. Generally, quantitative measurements with high spatial resolution (on the single QD level) can provide significant insight into the processes in nanostructured hybrid optoelectronic components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.