Abstract

Quantitative imaging of optical properties of biological tissues with high resolution has been a long-sought-after goal of many research groups. Photoacoustic imaging is a hybrid bio-optical imaging technique offering optical absorption contrast with ultrasonic spatial resolution. While photoacoustic methods offer significant promise for high-resolution optical imaging, quantification has thus far proved challenging. In this paper, a noniterative reconstruction technique for producing quantitative photoacoustic images of absorption perturbations is introduced for the case when the optical properties of the turbid background are known and when multiple optical illumination locations are used. Through theoretical developments and computational examples it is demonstrated that multiple-optical-source photoacoustic imaging can produce quantitative optical absorption reconstructions. The combination of optical and photoacoustic measurements is shown to yield improved reconstruction stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.