Abstract

The ultimate goal of photoacoustic tomography is to accurately map the absorption coefficient throughout the imaged tissue. Most studies either assume that acoustic properties of biological tissues such as speed of sound (SOS) and acoustic attenuation are homogeneous or fluence is uniform throughout the entire tissue. These assumptions reduce the accuracy of estimations of derived absorption coefficients (DeACs). Our quantitative photoacoustic tomography (qPAT) method estimates DeACs using iteratively refined wavefield reconstruction inversion (IR-WRI) which incorporates the alternating direction method of multipliers to solve the cycle skipping challenge associated with full wave inversion algorithms. Our method compensates for SOS inhomogeneity, fluence decay, and acoustic attenuation. We evaluate the performance of our method on a neonatal head digital phantom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.