Abstract
Activating mutations in tyrosine kinases (TKs) drive pediatric high-risk acute lymphoblastic leukemia (ALL) and confer resistance to standard chemotherapy. Therefore, there is urgent need to characterize dysregulated TK signaling axes in patients with ALL and identify actionable kinase targets for the development of therapeutic strategies. Here, we present the first study to quantitatively profile TK activity in xenografted patient biopsies of high-risk pediatric ALL. We integrated a quantitative phosphotyrosine profiling method with 'spike-in' stable isotope labeling with amino acids in cell culture (SILAC) and quantified 1394 class I phosphorylation sites in 16 ALL xenografts. Moreover, hierarchical clustering of phosphotyrosine sites could accurately classify these leukemias into either B or T-cell lineages with the high-risk early T-cell precursor (ETP) and Ph-like ALL clustering as a distinct group. Furthermore, we validated this approach by using specific kinase pathway inhibitors to perturb ABL1, FLT3, and JAK TK signaling in four xenografted patient samples. By quantitatively assessing the tyrosine phosphorylation status of activated kinases in xenograft models of ALL, we were able to identify and validate clinically relevant targets. Therefore, this study highlights the application and potential of phosphotyrosine profiling for identifying clinically relevant kinase targets in leukemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.