Abstract
AbstractAbstract 3376Nilotinib has been developed to overcome resistance to imatinib, the first line treatment of chronic myeloid leukemia (CML). To anticipate resistance to nilotinib, we generate nilotinib resistant CML cell lines in vitro to characterize mechanisms and signaling pathways that may contribute to resistance. Among the different mechanisms of resistance identified, the overexpression of the Src-kinase Lyn was involved in resistance both in vitro, in a K562 cell line (K562-rn), and in vivo, in nilotinib-resistant CML patients. To characterize how Lyn mediates resistance, we performed a phosphoproteomic study using SILAC (Stable Isotope Labelling with Amino acid in Cell culture). Quantification and identification of phosphotyrosine proteins in the nilotinib resistant cells point out two tyrosine kinases, the spleen tyrosine kinase Syk and the UFO receptor Axl. The two tyrosine kinase Syk and Axl interact with Lyn as seen by coimmunopreciptation. Syk is phosphorylated on tyrosine 323 and 525/526 in Lyn dependent manner in nilotinib resistant cells. The inhibition of Syk tyrosine kinase by R406 or BAY31-6606 restores sensitivity to nilotinib in K562-rn cells. In parallel, the inhibition of Syk expression by ShRNA in K562-rn cells abolishes Lyn and Axl phosphorylation and then interaction between Lyn and Axl leading to a full restoration of nilotinib efficacy. In the opposite, the coexpression of Lyn and Syk in nilotinib sensitive K562 cells induced resistance to nilotinib whereas a Syk kinase dead mutant did not. These results highlight for the first time the critical role of Syk in resistance to tyrosine kinase inhibitors in CML disease emphasizing the therapeutic targeting of this tyrosine kinase. Moreover, Axl, which is already a target in solid tumor, will be also an interesting pathway to target in CML. Disclosures:No relevant conflicts of interest to declare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.