Abstract

Quantitative phase imaging (QPI) quantifies the sample-specific optical-phase-delay enabling objective studies of optically transparent specimens such as biological samples but lacks chemical sensitivity, limiting its application to a morphology-based diagnosis. We present wide-field molecular vibrational (MV) microscopy realized in the framework of QPI utilizing a mid-infrared (MIR) photothermal effect. Our technique provides MIR spectroscopic performance comparable to that of a conventional infrared spectrometer in the molecular fingerprint region of 1450-1640 cm-1 and realizes wide-field molecular imaging of a silica-polystyrene bead mixture over a 100 μm×100 μm area at 1 frame per second with the spatial resolution of 430nm and 2-3 orders of magnitude lower fluence of ∼10 pJ/μm2 compared to other high-speed label-free molecular imaging methods, reducing photodamages to the sample. With a high-energy MIR pulse source, our technique could enable high-speed, label-free, simultaneous, and in situ acquisition of quantitative morphology and MV contrast, providing new insights for studies of optically transparent complex dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call