Abstract

Quantitative phase imaging (QPI) is an emerging label-free modality that attracts significant interest in biomedicine in general and neuroscience in particular. Based on the principle of interferometry, QPI precisely maps the optical pathlength induced by the sample, and, thus, can visualize extremely transparent samples. The QPI field has grown rapidly in the past decade, and reliable instruments have been developed for in-depth biological studies. One particular figure of merit associated with QPI techniques describes the temporal phase sensitivity of instruments. Recently, several common path interferometry methods have been developed, which yield high stability and nanometer scale pathlength sensitivity. In neuroscience, QPI has shown unique capabilities in quantifying neural growth and dynamics in cell cultures, as well as high contrast imaging of brain tissue slices. In this paper, we review the principles of QPI, novel QPI technology, advances in data processing, and a number of exciting applications in neuroscience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.