Abstract
Based on the hologram inpainting via a two-stage Generative Adversarial Network (GAN), we present a precise phase aberration compensation method in digital holographic microscopy (DHM). In the proposed methodology, the interference fringes of the sample area in the hologram are firstly removed by the background segmentation via edge detection and morphological image processing. The vacancy area is then inpainted with the fringes generated by a deep learning algorithm. The image inpainting finally results in a sample-free reference hologram containing the total aberration of the system. The phase aberrations could be deleted by subtracting the unwrapped phase of the sample-free hologram from our inpainting network results, in no need of any complex spectrum centering procedure, prior knowledge of the system, or manual intervention. With a full and proper training of the two-stage GAN, our approach can robustly realize a distinct phase mapping, which overcomes the drawbacks of multiple iterations, noise interference or limited field of view in the recent methods using self-extension, Zernike polynomials fitting (ZPF) or geometrical transformations. The validity of the proposed procedure is confirmed by measuring the surface of preprocessed silicon wafer with a Michelson interferometer digital holographic inspection platform. The results of our experiment indicate the viability and accuracy of the presented method. Additionally, this work can pave the way for the evaluation of new applications of GAN in DHM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.