Abstract
Measuring the performance of algorithms over dynamic optimization problems (DOPs) presents some important differences when compared to static ones. One of the main problems is the loss of solution quality as the optimization process advances in time. The objective in DOPs is in tracking the optima as the landscape changes; however, it is possible that the algorithm gets progressively further from the optimum after some changes happened. The main goal of this chapter is to present some difficulties that may appear while reporting the results on DOPs, and introduce two new performance tools to overcome these problems. We propose a measure based on linear regression to measure fitness performance degradation, and analyze our results on the moving peaks problem, using several measures existing in the literature as well as our performance performance degradation measure. We also propose a second measure based on the area below the curve defined by some population attribute at each generation (e.g., the best-of-generation fitness), which is analyzed in order to see how it can help in understanding the algorithmic search behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.