Abstract

Fusarium graminearum species complex (FGSC) is one of the most devastating fungal plant pathogens of cereal crops worldwide, resulting in a corresponding mycotoxins contamination in cereal-based food. The detection of FGSC to study its population structure and species distribution is of great concern for the integrated control of mycotoxins contamination in grains entering food supply chains. In this study, real time quantitative PCR (RT-qPCR) and droplet digital PCR (ddPCR) methods were developed for the species-specific detection of Fusarium graminearum species complex in winter wheat growing regions in China. Primers and probes were designed basing the on the sequence of Fg-16 SCAR fragment (sequence characterized amplified regions analysis) and confirmed to make a distinguishment between the two prevailing species including Fusarium graminearum sensu stricto and Fusarium asiaticum. The assay specificity was tested against 24 isolates of target Fusarium species and several non-target Fusarium species that were frequently isolated from wheat in China. Consistent results could be obtained by the developed RT-qPCR and ddPCR assays, and both of them were sensitive enough for the detection of FGSC in these regions. Population structure and species distribution of FGSC in North China plain and Yangtze River plain by the developed qPCR assays accorded with previous results obtained by fungal isolation method. The newly developed qPCR assays are time-saving and will provide new insights during the routine surveillance of FGSC in winter wheat growing regions in China and possibly other countries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call