Abstract

A Rayleigh-type surface acoustic wave (SAW) is used in various fields as classical and quantum information carriers because of its surface localization, high electrical controllability, and low propagation loss. Coupling and hybridization between the SAW and other physical systems such as magnetization, electron charge, and electron spin are the recent focuses in phononics and spintronics. A precise measurement of the surface wave amplitude is often necessary to discuss the coupling strengths. However, there are only a few such measurement techniques and they generally require a rather complex analysis. Here we develop and demonstrate a straightforward measurement technique that can quantitatively characterize the SAW. The technique optically detects the surface waving due to the coherently driven SAW by the optical path modulation. Furthermore, when the measurement system operates in the shot-noise-limited regime, the surface slope and displacement at the optical spot can be deduced from the optical path modulation signal. Our demonstrated technique will be an important tool for SAW-related research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.