Abstract

Colloidal crystals are excellent model systems to study self-assembly and structural coloration because their periodicities coincide with the wavelength range of visible light. Different assembly methods inherently introduce characteristic defects and irregularities, even with nearly monodisperse colloidal particles. Here, we investigate how these imperfections influence the structural coloration by comparing two techniques to obtain colloidal crystals. 3D colloidal crystals produced by convective assembly are well-ordered and periodically arranged but show microscopic cracks. (2+1)D colloidal crystals fabricated by stacking individual monolayers show a decreased hexagonal order and limited crystal registration between single monolayers in the z-direction. We investigate the optical properties of both systems by comparing identical numbers of layers using correlative microspectroscopy. These measurements show that the less ordered (2+1)D colloidal crystals exhibit higher reflected light intensities. Macroscopic reflection integrating all angles shows that the reflected light intensity levels out with an increasing number of layers, whereas incoherent scattering increases. Although both types of colloidal crystal show similar angle-dependent color shifts in specular reflection, the less-ordered structure of the (2+1)D colloidal crystal scatters light within a larger angular range under diffusive illumination. Our results suggest that structural coloration is surprisingly robust toward local defects and irregularities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.