Abstract
Quantitative dehydration studies of dibasic calcium phosphate anhydrous (DCPA) in a small-scale cold-model fluidized bed dryer with process air control were conducted. Near-infrared spectroscopy (NIRS) with partial least squares regression (PLSR) was used to predict DCPAs’ residual moisture content. Loss-on-drying (LOD) was employed as a reference method and confirmed the actual moisture content of DCPA. First, dynamic PLSR modeling was carried out, i.e., the NIR spectra were on-line recorded and predicted throughout the drying process. Secondly, PLSR off-line modeling was performed, i.e., samples were consecutively thief-probed from the processor, put into glass vials and analyzed off-line. Furthermore, two background spectra were collected prior to the in- and off-line measurements in an attempt to increase the method’s sensitivity, i.e., (i) dry DCPA that was fluidized at respective process air velocity (on-line) or inside a glass vial (off-line) and (ii) Spectralon® – a highly reflecting standard reference material made of fluoropolymer. Benefits and drawbacks of the in- and off-line approaches with different spectral backgrounds are discussed in detail. The results indicated that (i) the thief-probed sample amount from the processor and thus the sample weight and (ii) the downtime between thief-probing a sample and its actual analysis via NIRS and LOD can bias the moisture content predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.