Abstract

This work deals with quantitative comparisons between experimental and numerical results for shock-bubbles interactions. The bubbles are filled with three different gases (nitrogen, krypton and helium) surrounded by air in order to investigate all kind of density jumps across the interface. For each case, three incident shock wave intensities are also studied. The experiments are led by using a shock tube coupled with a visualization diagnostic device: the T80 shock tube [G. Jourdan, L. Houas, L. Schwaederlé, G. Layes, R. Carrey, and F. Diaz, “A new variable inclination shock tube for multiple investigations,” Shock Waves 13, 501 (2004)]. Considering the same initial and geometrical conditions, the numerical results are obtained with the help of a recent numerical method: the discrete equations method [R. Abgrall and R. Saurel, “Discrete equations for physical and numerical compressible multiphase mixtures,” J. Comput. Phys. 186, 361 (2003); R. Saurel, S. Gavrilyuk, and F. Renaud, “A multiphase model with internal degrees of freedom: Application to shock-bubble interaction,” J. Fluid Mech. 495, 283 (2003); A. Chinnayya, E. Daniel, and R. Saurel, “Modelling detonation waves in heterogeneous energetic materials,” J. Comput. Phys. 196, 490 (2004); O. Le Métayer, J. Massoni, and R. Saurel, “Modelling evaporation fronts with reactive Riemann solvers,” J. Comput. Phys. 205, 567 (2005)], devoted to the computation of interface problems as well as multiphase mixtures. For each configuration, the quantitative comparisons are in good agreement showing the capability of both methods (numerical and experimental) to describe complex physical flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call