Abstract
We present a new approach, inspired by Stein’s method, to prove a central limit theorem (CLT) for linear statistics of $\beta$-ensembles in the one-cut regime. Compared with the previous proofs, our result requires less regularity on the potential and provides a rate of convergence in the quadratic Kantorovich or Wasserstein-2 distance. The rate depends both on the regularity of the potential and the test functions, and we prove that it is optimal in the case of the Gaussian Unitary Ensemble (GUE) for certain polynomial test functions. The method relies on a general normal approximation result of independent interest which is valid for a large class of Gibbs-type distributions. In the context of $\beta$-ensembles, this leads to a multi-dimensional CLT for a sequence of linear statistics which are approximate eigenfunctions of the infinitesimal generator of Dyson Brownian motion once the various error terms are controlled using the rigidity results of Bourgade, Erdős and Yau.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.