Abstract
In this paper, an inversion algorithm for three-dimensional profile reconstruction of wall thinning defect in a double-layer region of a typical coolant pipe of nuclear power plants from pulsed eddy current testing (PECT) signals has been proposed and experimentally validated, based on a fast simulator of PECT signals and a deterministic optimization strategy. First, the fast simulator developed by authors for PECT signal prediction based on a Fourier-series scheme in addition with interpolation and database approaches is briefly described as a base for the inversion of PECT signals. Then, the formula of the conjugate graduate inversion algorithm for sizing three-dimensional wall thinning from PECT signals is deduced in detail based on that for crack like reconstruction using single frequency ECT signals. The three-dimensional local wall thinning is modeled as a group of planar defects with different length and depth which are reconstructed from two-dimensional scanning PECT signals through inverse analysis. Through conducting PECT experiment for double-layer coolant tube test-piece and reconstructing wall thinning profile from the measured signals, the efficiency and the robustness of the proposed inversion algorithm are demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.