Abstract

Even though the currently intensive research efforts on high-temperature superconducting materials have not yet converged on a well specified material, the strong indications are that such a material will be brittle, anisotropic, and may contain many flaws such as microcracks and voids at grain boundaries. Consequently, practical applications of high temperature superconducting materials will require a very careful strength analysis based on fracture mechanics considerations. Because of the high sensitivity of the strength of such materials to the presence of defects, methods of quantitative non-destructive evaluation may be expected to play an important role in strength determinations. This proposal is concerned with the use of ultrasonic methods to detect and characterize isolated cracks, clusters of microcracks and microcracks distributed throughout the material. Particular attention will be devoted to relating ultrasonic results directly to deterministic and statistical linear elastic fracture mechanics considerations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call