Abstract
Reactive carbonyl species (RCS) induce a fundamental form of biological stress that has driven the evolution of diverse mechanisms for minimizing its impact on organismal health. The complications that accompany uncontrolled hyperglycemia exemplify the health implications when RCS stress exceeds the body's capacity to prevent the excessive formation of advanced glycation end-products. Presented here is a novel quantitative NMR (qNMR) technique for evaluating scavengers of the prominent sugar-derived carbonyl methylglyoxal (MGO). This tool was employed to screen the chemical diversity of marine macroalgae extracts, with a focus on species that have a history of consumption by the World's healthiest populations and are subject to global scale aquacultural production. Fucus vesiculosus demonstrated the highest capacity for inhibiting glycation and scavenging MGO. Additionally, the Chondrus cripsus, Gracilaria vermiculophyla, and Gracilaria tikvahiae extracts had a high capacity for scavenging MGO, representing the first report of this activity. This new qNMR methodology presented is highly applicable for screening extracts and compounds from diverse sources, and the results highlight the potential of macroalgae extracts to be employed as RCS and AGE targeting therapeutics and food additives.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.