Abstract

Multifocal functional magnetic resonance imaging has recently been introduced as an alternative method for retinotopic mapping, and it enables effective functional localization of multiple regions-of-interest in the visual cortex. In this study we characterized interactions in V1 with spatially and temporally identical stimuli presented alone, or as a part of a nine-region multifocal stimulus. We compared stimuli at different contrasts, collinear and orthogonal orientations and spatial frequencies one octave apart. Results show clear attenuation of BOLD signal from the central region in the multifocal condition. The observed modulation in BOLD signal could be produced either by neural suppression resulting from stimulation of adjacent regions of visual field, or alternatively by hemodynamic saturation or stealing effects in V1. However, we find that attenuation of the central response persists through a range of contrasts, and that its strength varies with relative orientation and spatial frequency of the central and surrounding stimulus regions, indicating active suppression mechanisms of neural origin. Our results also demonstrate that the extent of the signal spreading is commensurate with the extent of the horizontal connections in primate V1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.