Abstract

IntroductionLittle is known regarding the impact of concurrent critical illness and thoracic noncardiac perioperative critical care on postnatal brain development. Previously, we reported smaller total brain volumes in both critically ill full-term and premature patients following complex perioperative critical care for long-gap esophageal atresia (LGEA). Our current report assessed trends in regional brain sizes during infancy, and probed for any group differences. MethodsFull-term (n = 13) and preterm (n = 13) patients without any previously known neurological concerns, and control infants (n = 16), underwent non-sedated 3 T MRI in infancy (<1 year old). T2-weighted images underwent semi-automated brain segmentation using Morphologically Adaptive Neonatal Tissue Segmentation (MANTiS). Regional tissue volumes of the forebrain, deep gray matter (DGM), cerebellum, and brainstem are presented as absolute (cm3) and normalized (% total brain volume (%TBV)) values. Group differences were assessed using a general linear model univariate analysis with corrected age at scan as a covariate. ResultsAbsolute volumes of regions analyzed increased with advancing age, paralleling total brain size, but were significantly smaller in both full-term and premature patients compared to controls. Normalized volumes (%TBV) of forebrain, DGM, and cerebellum were not different between subject groups analyzed. Normalized brainstem volumes showed group differences that warrant future studies to confirm the same finding. DiscussionBoth full-term and premature critically ill infants undergoing life-saving surgery for LGEA are at risk of smaller total and regional brain sizes. Normalized volumes support globally delayed or diminished brain growth in patients. Future research should look into neurodevelopmental outcomes of infants born with LGEA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call