Abstract

Magnetic properties characterized by susceptibility and chemical shift linearly modify the local magnetic field experienced by spins. A piece-wise constant solution using magnetic resonance imaging is found to the challenging inversion problem from field to magnetic properties. The magnetic field shifts were estimated from MR phase images. The MR magnitude images were segmented into many regions of uniform magnetic properties. Standard linear regression using the calculated magnetic field from each region allowed accurate susceptibility quantification. The technique was experimentally validated on a variety of samples including water, vegetable oil, air, Gadolinium, and superparamagnetic iron oxides. Susceptibility was measured with a precision better than 0.1 ppm, in a range of 10 ppm. In vivo feasibility was shown on the forearm for which soft-tissue, cortical bone, and bone marrow susceptibility, and chemical shift values in good agreement with literature data were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.