Abstract
In the first paper of this series we use the publicly available code Gim2D to model the r- and i-band images of all galaxies in a magnitude-limited sample of roughly 1800 morphologically classified galaxies taken from the Sloan Digital Sky Survey. The model is a concentric superposition of two components, each with elliptical isophotes with constant flattening and position angle. The disk luminosity profile is assumed exponential, while the bulge is assumed to have a de Vaucouleurs or a Sersic profile. We find that the parameters returned by Gim2D depend little on the waveband or bulge profile used; their formal uncertainties are usually small. Nevertheless, for bright galaxies the measured distribution of b/a, the apparent disk flattening, deviates strongly from the expected uniform distribution, showing that the `disk' identified by the code frequently corresponds to an intrinsically 3-dimensional structure rather than to a true thin disk. We correct approximately for this systematic problem using the observed statistics of the b/a distribution and estimate, as a function of absolute magnitude, the mean fractions of galaxy light in disks and in `pure bulge' systems (those with no detectable disk). For the brightest galaxies the disk light fraction is about 10% and about 80% are `pure bulge' systems. For faint galaxies most of the light is in disks and we do not detect a `pure bulge' population. Averaging over the galaxy population as a whole, we find that 54 \pm 2% of the local cosmic luminosity density at both r and i comes from disks and 32 \pm 2% from `pure bulge' systems. The remaining 14 \pm 2% comes from bulges in galaxies with detectable disks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.