Abstract

Struvite precipitation is a promising strategy for the simultaneous recovery of nitrogen and phosphorus from waste streams. However, waste streams typically contain high amounts of metal contaminants, including Ni, which can be easily sequestered by struvite, but the behavior of Ni during struvite precipitation remains unclear. Thus, this study investigates the influence of Ni concentrations on struvite precipitation. The quantitative X-ray diffraction (QXRD) results revealed that the purity of struvite decreased from 96.6 to 41.1% with the Ni concentrations increased from 0.1–100 mg·L−1. At lower Ni concentrations of 0.1–1 mg·L−1, scanning electron microscopy (SEM) showed a roughened surface of struvite crystal, and this was combined with X-ray absorption near edge structure (XANES) data that indicated a stack of Ni-OH and Ni-PO4 on struvite surface. At Ni concentrations of 10–25 mg·L−1, Ni primarily crystalized as Ni-struvite (NiNH4PO4·6H2O), as detected by QXRD. At higher Ni concentrations of 25–100 mg·L−1, the co-precipitation of amorphous Ni phosphate(s) (e.g., Ni3(PO4)2) and Ni hydroxide (e.g., Ni(OH)2) was identified by XANES. Specifically, the X-ray photoelectron spectroscopy (XPS) analysis detected the formation of amorphous Mg hydroxide(s) and phosphate(s) at Ni of 25–100 mg·L−1. The overall results revealed that Ni formed Ni-OH and Ni-PO4 on struvite surface at 0.1–1 mg·L−1, whereas Ni precipitated as separated phases (e.g. Ni-struvite, Ni hydroxide and phosphate) at 10–100 mg·L−1. The existence of Ni disturbed the crystal growth of struvite and promoted the formation of Ni-struvite, amorphous products during struvite formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.