Abstract
The development of somatic cell nuclear transfer (SCNT) embryos critically depends on appropriate reprogramming and expression of pluripotency genes, such as Pou5f1/POU5F1 (previously known as Oct4/OCT4). To study POU5F1 transcription activation in living bovine SCNT embryos without interference by maternal POU5F1 mRNA, we generated chromosomally normal fetal fibroblast donor cells stably carrying a mouse Pou5f1 promoter-driven enhanced green fluorescent protein (EGFP) reporter gene at a single integration site without detectable EGFP expression. Morphologic and quantitative analyses of whole-mount SCNT embryos by confocal microscopy revealed robust initial activation of the Pou5f1 reporter gene during the fourth cell cycle. In Day 6 SCNT embryos EGFP expression levels were markedly higher than in Day 4 embryos but varied substantially between individual embryos, even at comparable cell numbers. Embryos with low EGFP levels had far more morphologically abnormal cell nuclei than those with high EGFP levels. Our data strongly suggest that bovine SCNT embryos consistently start activation of the POU5F1 promoter during the fourth cell cycle, whereas later in development the expression level substantially differs between individual embryos, which may be associated with developmental potential. In fibroblasts from phenotypically normal SCNT fetuses recovered on Day 34, the Pou5f1 reporter promoter was silent but was activated by a second round of SCNT. The restoration of pluripotency can be directly observed in living cells or SCNT embryos from such Pou5f1-EGFP transgenic fetuses, providing an attractive model for systematic investigation of epigenetic reprogramming in large mammals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.