Abstract

The regulation of cell signaling occurs through a complex set of coupled processes occurring over multiple length and time scales. Computational modeling approaches have been applied to dissect this complexity over these various time and length scales, which range from the molecular level to the cell and tissue level, but these approaches have not focused heavily on the regulation or roles of phosphatases. Because of the clear importance of phosphatases in cell signaling, significant opportunities exist to expand our understanding of the regulation of cell signaling in metabolism and other cell regulatory processes by focusing modern computational approaches on phosphatases and the processes they regulate. The aim of this chapter is to provide a brief review of some computational modeling approaches that have been usefully applied to study the regulation of signaling, mainly by kinases, over a range of length and time scales and to describe opportunities to apply similar approaches for understanding signaling regulation by phosphatases. Some specific examples of key relevance to metabolism are described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.