Abstract

Mitochondria are involved in many crucial cellular processes. Maintaining healthy mitochondria is essential for cellular homeostasis. Parkin-dependent mitophagy plays an important role in selectively eliminating damaged mitochondria in mammalian cells. However, mechanisms of Parkin-dependent mitophagy remain elusive. In this research, we performed data-independent acquisition-based quantitative mitochondrial proteomics to study the proteomic alterations of carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced Parkin-mediated mitophagy. We identified 222 differentially expressed proteins, with 76 upregulations and 146 downregulations, which were potentially involved in mitophagy. We then demonstrated that annexin A7 (ANXA7), a calcium-dependent phospholipid-binding protein, can translocate to impaired mitochondria upon CCCP treatment, where it played a pivotal part in the process of Parkin-dependent mitophagy via interacting with BASP1. As a mitochondrial uncoupling agent, CCCP indirectly regulated ANXA7 and BASP1 to induce Parkin-dependent mitophagy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.