Abstract

A driver film method, in which a highly stressed overlayer is deposited to de-adhere a target film from a substrate, was developed to study the subcritical debonding behavior of Cu films from glass substrates. The driving force for debonding along Cu/glass interfaces was varied by depositing Cr overlayers to a range of thicknesses. One-dimensional crack growth was achieved by using C release layers and cutting strips from blanket films. Crack velocities, v, were measured and a wide strip solution was developed to obtain strain energy release rates, G. The Cu/Cr strips delaminated in a highly reproducible way, generating v–G plots similar to those seen in stress-corrosion cracking of bulk glass. Small variations in the amount of oxygen incorporated into the films during deposition strongly affected delamination rates. A reaction rate model for subcritical cracking by hydroxylation of the surfaces suggests that changes in oxygen content change the density of strong Cu–O–Si bonds across the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.