Abstract

AbstractLiquid fraction profiles of a column of draining aqueous foam stabilized with sodium dodecyl sulfate were studied by nuclear magnetic resonance imaging (NMRI) at high spatial and temporal resolution. It was observed that the liquid holdup in the column is not locally homogeneous in the direction of the column axis with liquid holdup exhibiting periodic variation in time. This creates “ripples” in the liquid content profiles (that is, an approximately sinusoidal variation of liquid fraction in space). These ripples are seen to actually rise in the column as liquid drains down through the foam. This behavior may be explained by a simple mass balance: the rising velocity of the ripples multiplied by the gas fraction in the foam is equivalent to the liquid superficial drainage rate. Thus, NMRI is proposed as a powerful tool for studying drainage of foams because it provides a noninvasive method of measuring superficial drainage rate in foams that yields time‐resolved instantaneous drainage rates as a function of position in the column. The measured liquid drainage rates were compared with a dimensionless expression for the liquid drainage rate and excellent agreement was achieved. © 2006 American Institute of Chemical Engineers AIChE J, 2007

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.