Abstract

The power transformer is vital to the reliability of the power grid which is most commonly insulated with Kraft paper and immersed in mineral oil, among which the aged state of the paper is mainly correlated to the operating life of the transformer. Degree of polymerization (DP) is a direct parameter to assess the aged condition of insulating paper, but existing DP measurement by viscosity methods are destructive and complicated. In this paper, terahertz time-domain spectroscopy (THz-TDS) was introduced to reach rapid, non-destructive detection of the DP of insulating paper. The absorption spectra of insulating paper show that characteristic peak regions at 1.8 and 2.23 THz both exhibit a log-linear quantitative relationship with DP, and their universalities are confirmed by conducting the above relationship on different types of insulating paper. Fourier transform infrared spectroscopy (FTIR) analysis and molecular dynamics modeling further revealed that 1.8 and 2.23 THz were favorably associated with the growth of water-cellulose hydrogen bond strength and amorphous cellulose, respectively. This paper demonstrates the viability of applying THz-TDS to the non-destructive detection of DP in insulating paper and assigned the vibration modes of the characteristic absorption peaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call