Abstract

Shear strains during processing affect the agglomerate size of nanoparticles in nanocomposites and their final behavior in various applications. In this study, dielectric characterization technique as a novel and well-effective method is applied for quantitative measurement of average agglomerate size in polymer nanocomposites under shear strain sweep, combining with an existing analytical model. Examining how changes in filler content, surface energy and polarity of particles and the matrix control the strain-dependency of agglomerates size, two different nanoparticles, namely, titanium dioxide (TiO2) and carbon black (CB), with same average diameters and volumes were added to polystyrene (PS). It was found that larger agglomerates were present in the PS/CB nanocomposite prior to shearing and the CB agglomerates were less prone to deagglomeration under shear strain. This behavior was attributed to higher polarity of CB nanoparticles, leading to higher tendency for agglomeration and higher resistance to shear, in respect to TiO2 nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call