Abstract

Dispersion dynamics of accidentally released radioactive aerosols or gases through laboratory workrooms are determined primarily by airflow, which impacts the level of human exposure and the response of air monitoring instrumentation. Therefore, applying conclusions derived from measurements of the fundamental aspects of airflow (velocity, direction, and turbulence) can lead to better protection of workers by suggesting appropriate locations for air monitoring and sampling. Historically, it has been very difficult to quantitatively measure these fundamental aspects of indoor airflow because of the low flow rates (often <10 cm s(-1)) and difficulties in quantitative measurement of three-dimensional airflow. Recent advances in sonic anemometry have enabled such measurements. For this study, a sonic anemometer was used that was capable of measuring airflow velocities with a sensitivity of about 0.5 cm s(-1) for each of the three-directional components. A sampling frequency of 1 Hz was selected to measure the fluctuations in the air velocity associated with turbulence and expressed in terms of "turbulence intensity." Point measurements of airflow velocities, directions, and turbulence intensities were made at 69 locations in a mechanically ventilated plutonium laboratory located at Los Alamos National Laboratory. Although the measurements were not made with workers present, all measurements were made at a height of 1.5 m, approximately the height of a worker's breathing zone (BZ). Velocities ranged from 8 cm s(-1) to 41 cm s(-1), with a median velocity of 18 cm s(-1). Percent turbulence intensities ranged from 13% to 57% with a median of 34%. The measured velocities and turbulence intensities in the laboratory showed that forced convective flows and turbulent eddy diffusion drive dispersion of released aerosols or gases. Results show that after an airborne release, mixing within the room can take minutes and may not always be complete. This is contrary to simplifying assumptions made by some risk modeling of accidentally released materials in a room. Our results also suggest that the mixing pattern would not be omnidirectional at most release locations, especially in the early stages of the release. Finally, airflow directions were upwards in breathing zones at most workstations. Because most releases in the plutonium laboratory occur at a height immediately below the BZ, the concentrated aerosol could be lifted into the BZ, followed by dispersal to the air monitor with the initiation of alarm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call