Abstract

The purpose of this study is to develop MRI methods to measure the solid fraction in granular flows quantitatively. It is increasingly recognised that solid fraction plays a key role in granular rheology, but experimental characterisation of it during flow is challenging. Here centric sectoral-SPRITE imaging is applied to image mustard seeds discharging from a 3D-printed hopper. Quantitative images are obtained after considering and correcting artefacts that may arise from flow and relaxation. The image intensity is then further corrected for spatial variations in the B1 field. Various maps of nominally homogeneous samples were tested to correct for variations in the B1 field. The B1 field was found to be sensitive to the geometry of the sample and the material in the sample. Hence, here static images of the seeds in the hopper were used to correct for B1 field variations. Moreover, small signal variations were observed from measurements performed on different days owing to subtle differences in the spectrometer operation. Here an internal standard was used to scale the signal intensity and correct for these variations. Following these corrections, a linear correlation (R2 = 0.999) was observed between the scaled image intensities and the known solid fractions of packed samples with solid fractions between 0.55 and 0.64. This correlation was used as a calibration of the 3D image of the hopper to extract quantitative time-averaged spatial maps of solid fraction during steady flow. The measurements were confirmed to be quantitative by also measuring the velocity of the particles. Together these measurements were used to calculate a mass flow rate in the hopper, which was consistent with the mass flow measured gravimetrically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.