Abstract

Organotypic hippocampal cultures were used to study cell degeneration during the recovery period after defined periods (30 and 60 min) of combined oxygen/glucose deprivation mimicking transient ischemic conditions. Staining with the fluorescent dye propidium iodide allowed detection of damaged cells. Fluorescence intensity was measured by an image analysis system and used to quantify cell damage at different time points during the recovery period (up to 22 h). At 30 min of oxygen/glucose deprivation cells in the CA1 area were relatively more sensitive compared to CA3 and dentate gyrus cells, with respect to the time course of degeneration and the percentage of affected cells. Expanding the oxygen/glucose deprivation period from 30 to 60 min drastically increased the percentage of cells dying in all hippocampal areas. Still, however, cells in CA1 degenerated faster compared to those in the CA3 area and dentate gyrus. A histological analysis of toluidine blue as well as MAP2-immunostained sections revealed that almost all neurones degenerated in all hippocampal areas following the 60-min deprivation period, whereas GFAP-stained astrocytes appeared to be unaffected. Therefore, neuronal degeneration could be quantified by taking the fluorescence intensity values 22 h after 60 min of oxygen/glucose deprivation as 100% neuronal damage. The possibility to quantify neuronal damage in organotypic cultures offers a useful tool for detailed studies on mechanisms of neuronal cell death in a cell culture system which is closer to in situ conditions than monolayer cell cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.