Abstract

Exposure to cycad ( Cycas micronesica K.D. Hill) toxins via diet has been shown to induce neurodegeneration in vivo that mimics the progressive neurological disease, amyotrophic lateral sclerosis–parkinsonism dementia complex (ALS–PDC). In previous studies, specific cortical and subcortical cell loss was measured with conventional stained sections. In the present study, magnetic resonance (MR) microscopy was used to examine neurodegeneration in three dimensions (3D) in isolated intact brains and spinal cords. Mice were fed washed cycad for 2 months and showed progressive motor deficits resembling human ALS–PDC. CNS tissue was imaged at 17.6 T. T 2* scans were acquired on both spinal cord and brain samples with an isotropic resolution of 41 μm. Through MR volumetrics, cycad-fed mice showed significantly decreased volumes in lumbar spinal cord gray matter, substantia nigra, striatum, basal nucleus/internal capsule, and olfactory bulb. Cortical measurements of conventionally stained sections revealed that cycad-fed mice also showed decreased cortical thickness. These results show that MR microscopy (MRM) is sensitive enough to measure degeneration in this early stage model of a progressive neurological disease with strong correlations to behavioral deficits and histological results and may be applicable in vivo to the same model. Similar analysis may be used in the future as a diagnostic aid in tracking the early progression of neurological disorders in preclinical human subjects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.