Abstract

Here we present quantitative measurements of total electron numbers in laser-induced air breakdown at pressures ranging from atmospheric to 40 barg by 10 ns and 100 ps laser pulses. A quantifiable definition for the laser-induced breakdown threshold is identified by a sharp increase in the measurable total electron numbers via dielectric-calibrated coherent microwave scattering. For the 10 ns laser pulse, the threshold of laser-induced breakdown in atmospheric air is defined as the total electron number of ∼106. This breakdown threshold decreases with an increase of pressure and laser photon energy (shorter wavelength), which is consistent with the theory of initial multiphoton ionization and subsequent avalanche processes. For the 100 ps laser pulse cases, a clear threshold is not present and only marginal pressure effects can be observed, which is due to the short pulse duration leading to stronger multiphoton ionization and minimal collisional avalanche ionization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call