Abstract
A major obstacle in the development of effective oligonucleotide therapeutics is a lack of understanding about their cytosolic and nuclear penetration. To address this problem, we have applied the chloroalkane penetration assay (CAPA) to oligonucleotide therapeutics. CAPA was used to quantitate cytosolic delivery of antisense oligonucleotides (ASOs) and siRNAs and to explore the effects of a wide variety of commonly used chemical modifications and their patterning. We evaluated potential artifacts by exploring the effects of serum, comparing activity data and CAPA data, and assessing the impact of the chloroalkane tag and its linker chemistry. We also used viral transduction to expand CAPA to the nuclear compartment in epithelial and neuronal cell lines. Using this enhanced method, we measured a 48-h time course of nuclear penetration for a panel of chemically diverse modified RNAs. Moving forward, CAPA will be a useful tool for deconvoluting the complex processes of endosomal uptake, escape into the cytosol, and subcellular trafficking of oligonucleotide therapeutics in therapeutically relevant cell types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.