Abstract
We describe herein the development of a matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) approach for screening of protein kinase inhibitors (PKIs). MS quantification of phosphopeptides, the kinase-catalyzed products of nonphosphorylated substrates, is a great challenge due to the ion suppression effect of highly abundant nonphosphorylated peptides in enzymatic reaction mixtures. To address this issue, a novel type of titania coated magnetic hollow mesoporous silica spheres (TiO(2)/MHMSS) material was fabricated for capturing phosphopeptides from the enzymatic reaction mixtures prior to MS analysis. Under optimized conditions, even in the presence of 1000-fold of a substrate peptide of tyrosine kinase epidermal growth factor receptor (EGFR), the phosphorylated substrates at the femtomole level can be detected with high accuracy and reproducibility. With a synthetic nonisotopic labeled phosphopeptide, of which the sequence is similar to that of the phosphorylated substrate, as the internal standard, the MS signal ratio of the phosphorylated substrate to the standard is linearly correlated with the molar ratio of the two phosphopeptides in peptide mixtures over the range of 0.1 to 4 with r(2) being 0.99. The IC(50) values of three EGFR inhibitors synthesized in our laboratory were then determined, and the results are consistent with those determined by an enzyme-linked immunosorbent assay (ELISA). The developed method is sensitive, cost/time-effective, and operationally simple and does not require isotope/radioative-labeling, providing an ideal alterative for screening of PKIs as therapeutic agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.