Abstract

Various amyloid-β (Aβ) peptides accumulate in brain in Alzheimer's disease, and the amounts of specific peptide variants may have pathological significance. The quantitative determination of these variants is challenging because losses inevitably occur during tissue processing and analysis. This report describes the use of stable-isotope-labeled Aβ peptides as internal standards for quantitative mass spectrometric assays, and the use of cyanogen bromide (CNBr) to remove C-terminal residues beyond Met35. The removal of residues beyond Met35 reduces losses due to aggregation, and facilitates the detection of post-translationally modified Aβ peptides. Results from 8 human brain samples suggest that the tissue concentrations of the 42-residue Aβ peptide tend to be similar in different patients. Concentrations of the 40-residue Aβ peptide are more variable, and may be greater or lesser than the 42-residue peptide. The concentration of the CNBr cleavage product closely matches the sum of the 40-residue and 42-residue peptide concentrations, indicating that these two Aβ peptides account for most of the C-terminal variants in these patients. CNBr treatment facilitated the detection of post-translational modifications such as pyroglutamyl and hexose-modified Aβ peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.