Abstract
When a collimated beam of light is reflected by an approximately flat, mirror polished object and a screen is placed in the reflected beam some distance away from the object, a ‘‘magic mirror image’’ or Makyoh topogram of the object is formed on the screen. For objects with surface height variations, the topogram will not have a uniform intensity distribution, but even small height variations will show up strongly amplified as dark or bright patches/lines. Makyoh topography has been used for a number of years as a sensitive tool for the inspection of mirror polished surfaces, and in particular, semiconductor wafer surfaces. The main drawbacks of conventional Makyoh topography are, first, the ambiguity of interpretation because almost identical Makyoh topograms can result from an object with some given surface height profile and constant reflectivity, an object with constant surface height and a given nonuniform reflectivity profile, or an object with both height variations and a nonuniform reflectivity profile. The second drawback is the lack of quantitative interpretation, for example, surface height values cannot be obtained from the contrast in conventional topograms. I address these problems and describe a technique that for the first time enables the quantitative and unambiguous interpretation of Makyoh topograms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.