Abstract

Multiple sclerosis (MS) is a neuroinflammatory disease characterized by loss of myelin (demyelination) and, to a certain extent, subsequent myelin repair (remyelination). To better understand the pathomechanisms underlying de- and remyelination and to monitor the efficacy of treatments aimed at regenerating myelin, techniques offering noninvasive visualizations of myelin are warranted. Magnetic resonance (MR) imaging has long been at the forefront of efforts to visualize myelin, but it has only recently become feasible to access the rapidly decaying resonance signals stemming from the myelin lipid-protein bilayer itself. Here, we show that direct MR mapping of the bilayer yields highly specific myelin maps in brain tissue from patients with MS. Furthermore, examination of the bilayer signal behavior is found to reveal pathological alterations in normal-appearing white and gray matter. These results indicate promise for in vivo implementations of the myelin bilayer mapping technique, with prospective applications in basic research, diagnostics, disease monitoring, and drug development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call