Abstract

BackgroundBipolar disorder (BD) is a complex psychiatric phenotype with a high heritability and a multifactorial etiology. Multisite collaborative efforts using genome-wide association studies (GWAS) have identified only a portion of DNA sequence-based risk factors in BD. In addition to predisposing DNA sequence variants, epigenetic misregulation may play an etiological role in BD and account for monozygotic twin discordance, parental origin effects, and fluctuating course of BD. In this study, we investigated DNA methylation of the brain-derived neurotrophic factor (BDNF) gene in BD.MethodsFifty participants with BD were compared to the same number of age- and sex-matched controls for DNA methylation differences at BDNF promoters 3 and 5. DNA methylation reads were obtained using a mass spectrophotometer for 64 cytosine-guanine (CpG) sites in 36 CpG ‘units’ across three amplicons of BDNF promoters 3 and 5.Results and DiscussionMethylation fractions differed between BD participants and controls for 11 of 36 CpG units. Five CpG units, mostly in promoter 5, remained significant after false discovery rate correction (FDR) (p values ≤ 0.004) with medium to large effect sizes (Cohen's d ≥ 0.61). Several of the significant CpGs overlapped with or were immediately adjacent to transcription factor binding sites (TFBSs) - including two of the FDR-significant CpG units in promoter 5. For the CpGs in promoter 3, there was a positive and significant correlation between age at sample collection and DNA methylation fraction (rho = 0.56, p = 2.8 ×10−5) in BD cases, but not in controls. Statistically significant differences in mean methylation fraction at 5/36 CpG units (after FDR), some at or immediately adjacent to TFBSs, suggest possible relevance for the current findings to BD etiopathogenesis. The positive correlation between age and methylation seen in promoter 3 is consistent with age-related decline in BDNF expression previously reported. Future studies should provide more exhaustive epigenetic study of the BDNF locus to better characterize the relationship between BDNF methylation differences and BD.Electronic supplementary materialThe online version of this article (doi:10.1186/2194-7511-1-28) contains supplementary material, which is available to authorized users.

Highlights

  • Bipolar disorder (BD) is a complex psychiatric phenotype with a high heritability and a multifactorial etiology

  • Our aim was to characterize epigenetic regulation of brain-derived neurotrophic factor (BDNF) in peripheral blood, and our hypothesis was that BD patients exhibit BDNF promoter methylation differences compared to controls

  • Regional Cytosine-guanine dinucleotide (CpG) promoter methylation We examined DNA methylation for each CpG promoter region using the average of all CpG units mean methylation fractions (MMFs) in a BDNF region that we studied, in this case, the amplicons that were assayed

Read more

Summary

Introduction

Bipolar disorder (BD) is a complex psychiatric phenotype with a high heritability and a multifactorial etiology. Multisite collaborative efforts using genome-wide association studies (GWAS) have identified only a portion of DNA sequence-based risk factors in BD. In addition to predisposing DNA sequence variants, epigenetic misregulation may play an etiological role in BD and account for monozygotic twin discordance, parental origin effects, and fluctuating course of BD. Twin and adoption studies underscore the importance of inherited factors, and association studies, including genome-wide association studies by large consortia, have reported some replicable loci, notably CACNA1C, ODZ4, and NCAN In addition to genetic studies, discordance for BD in monozygotic (MZ) twins (Bertelsen et al 1977; Sklar et al 2002; McGuffin et al 2003; Kieseppa et al 2004) invites speculation about environmental risk factors. Despite the significant effort, much remains to be understood about the genetic and environmental basis of BD

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call