Abstract

We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and for the pressure and temperature dependence of the fluorescence efficiency, based on numerical modelling. These corrections are largest early in the stroke, when quenching rates are high and UV transmission is low. Together, they vary over more than three orders of magnitude during the combustion stroke. Fully quantitative results are realised by an overall calibration using independent concentration measurements in the exhaust gas. The data provide evidence of NO formation during both the premixed and mixing-controlled combustion phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.