Abstract

Laser-induced breakdown spectroscopy is explored for the development of an in-situ K–Ar geochronology instrument for Mars. Potassium concentrations in standard basaltic glasses and equivalent rock samples in their natural form are quantified using the potassium doublet at 766.49 and 769.90nm. Measurement precision varies from 0.5 to 5.5 (% RSD) over the 3.63% to 0.025% potassium by weight for the standard samples, and little additional precision is achieved above 20 laser shots at 5 locations. For the glass standards, the quantification limits are 920 and 66ppm for non-weighted and weighted calibration methods, respectively. For the basaltic rocks, the quantification limits are 2650 and 328ppm for the non-weighted and weighted calibration methods, respectively. The heterogeneity of the rock samples leads to larger variations in potassium signal; however, normalizing the potassium peak by base area at 25 locations on the rock improved calibration accuracy. Including only errors in LIBS measurements, estimated age errors for the glasses range from approximately ±30Ma for 3000Ma samples to±2Ma for 100Ma samples. For the basaltic rocks, the age errors are approximately ±120Ma for 3000Ma samples and ±8Ma for 100Ma samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.