Abstract

AbstractOn a Riemannian manifold with a positive lower bound on the Ricci tensor, the distance of isoperimetric sets from geodesic balls is quantitatively controlled in terms of the gap between the isoperimetric profile of the manifold and that of a round sphere of suitable radius. The deficit between the diameters of the manifold and of the corresponding sphere is likewise bounded. These results are actually obtained in the more general context of (possibly nonsmooth) metric measure spaces with curvature‐dimension conditions through a quantitative analysis of the transport rays decompositions obtained by the localization method. © 2018 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.