Abstract
In the present study, a systematic study of nanoscale precipitates in an Al-7.5Zn-1.7Mg-1.4Cu-0.12Zr alloy have been carried out for various typical aging tempers, including T6, T76, T74, T73 and RRA treatments, by combining synchrotron-based small-angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) techniques. Based on the TEM observations, quantitative and statistical structural information, including precipitate size, volume fraction, number density and inter-precipitate distance have been extracted from SAXS data through model fitting. The results show that the T6 peak-aged alloy with the smallest precipitate size has the highest number density and lowest volume fraction of precipitates. Under two-step T7X over-aged tempers, with the deepen of aging degree, the precipitate size, volume fraction and inter-precipitate distance increases, but the number density decreases. The size distribution of precipitates for the RRA-treated alloy is in between that of T6 and T76. The results also show that as the degree of over-aging deepens, the precipitate size distribution interval becomes broader.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.