Abstract

Force chains play an important role in linking the macro- and micro-mechanisms of powder in high velocity compaction (HVC). Force chain lengths, as an important quantitative characteristic, can describe the geometry of force chains. In this study, force chain lengths and their relation to other force chain characteristics in HVC were investigated by discrete element method. Results revealed that force chain length decreased and it can be related to the densification process of ferrous powder in HVC. Moreover, long force chains extended from top to bottom and may play a major role in supporting load, although the percentage of long force chains was low. Probability density functions of force chain lengths further showed the exponential decay. The proportion of short force chains increased and the proportion of long force chains decreased. Long force chains had high strength and can be aligned to the direction of the external load, but force chain lengths did not have clear relation to straightness. These relations were confirmed by Pearson correlation coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.