Abstract

Using pulse-heated constantan films as a thermal phonon radiator and superconducting tin bolometer as a phonon detector, we present for the first time a full quantitative comparison between observed bolometer signals and adequate rigorous model calculations for transmission experiments ina-cut sapphire, [111]-cut silicon, as well asX-cut quartz andZ-cut quartz. Details of the observed phonon signals are explained and understood. From these experiments, we are also able to extract information about the phonon absorption coefficient in the normal state of the polycrystalline tin bolometer for longitudinal and transverse polarized phonons in quantitative agreement with an earlier experiment ina-cut sapphire which was performed with a superconducting tunnel junction as a detector. The observed transmission signals can be explained for sapphire and silicon by ballistic propagation with additional small angle scattering, but for quartz strong frequency downconversion occurs for phonons with frequencies above half a Terahertz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.