Abstract

Oil and gas resources are closely related to daily life and are an important support for the economy of a city or even a country. Hydraulic fracturing is an indispensable technique to economically develop oil and gas resources through creating complex fractures. Temporary plugging and diverting fracturing (TPDF) can generate diversion fractures perpendicular to the initial fractures and enhance the stimulated area. The aperture of the diversion fractures determines its conductivity and the oil/gas production. However, it is difficult to evaluate the aperture of the diversion fracture due to the complex physical process of hydraulic fracturing. This work established a fluid–solid fully coupled simulation model to investigate the fracture aperture influenced by various factors during TPDF. The model can simulate the propagation of the initial fracture and the diversion fracture. Various factors include the tight plug’s permeability, the tight plug’s length, Young’s modulus, rock tensile strength, in situ stress contrast, the leak-off coefficient of the fracture surface, and fluid injection rate. The results show that the aperture of the previous fracture can be enlarged, and the aperture of the diversion fracture can be decreased by the tight plug. The aperture at the diversion fracture mouth is much smaller than that along the diversion fracture. Reservoirs with low Young’s modulus values and high rock tensile strength can generate the diversion fracture with a wider aperture. Moreover, increasing the fluid injection rate can effectively increase the fracture mouth aperture. In this way, the risk of screenout can be lowered. This work is beneficial for the design of the TPDF and ensures safe construction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call